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ABSTRACT 

A new method f o r  pred ic t ing  in  low supersonic flow t h e  f l u t t e r  
boundaries f o r  a very low aspect r a t i o  rectangular  f l a t  panel i s  
presented. The method i s  based on l inear ized ,  three-dimensional p o t e n t i a l  
flow theory and small def lec t ion  p l a t e  theory.  
edge condition has been considered, although other edge conditions can 
be t r e a t e d  i n  a similar manner. 

Only t h e  simply supported 

An analysis  for t h e  determination of t h e  model parameters of a 
s t a t iona ry  w a v y  wal l  wind tunnel  model i s  given. 

The design of a boundary layer probe t o  obtain adequate experimental 
informat,ion fo r  t he  descr ipt ion of t h e  ve loc i ty  d i s t r ibu t ion  and the  pressure 

also presented. The probe i s  s t ing  supported and capable of t ravers ing  the  
boundary layer  i n  three  mutually perpendicular d i rec t ions .  

dlstyi>dtioc ~&tb,ir, 9 >cl~~”,l;r:r Ilvnr J -- cf v p r i p h l e  -khickcess 5. 
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LIST OF SYMBOLS 

i -  

= panel chord 

= panel span 

= speed of sound 

3 2 = Eh /12(1-v ) = flexura, r i g i d i t y  of panel 

= modulus of e l a s t i c i t y  

= s t r w t u r a l  damping coef f ic ien t  

= panel thickness 

= -1 

= wb/U = reduced frequency 

= Mach number 

= perturbat ion pressure a t  upper surface 

= oU /2 = dynamic pressure 

= defined by (7) 

2 

B,s, = defined by (11) 

r 

S 

t = t i m e  

U = freestream ve loc i ty  

W 

x,y,z= reference coordinate sys%em 

= wave number i n  t he  spanwise d i r ec t ion  der"ined by (33) 

= a/2b = 1 /AR = inverse of aspect r a t i o  of panel 

= transverse displacement of panel ( i n  t h e  z-direction) 

B = ( b ? - l ) l / 2  

r = defined by (25)  

Y = defined by (94) 

6 = defined by (8) 

E = defined by (56) 

h = wave number i n  the  chordwise d i r ec t ion  defined by (33) 

vi  



P 

V 

P 

p s  

7 

cp 

cp 

Y 

w 

= TP,/P 

= Poisson's ratio 

= mass air density 

= mass density of panel 

= h/b = non-dimensional panel thickness ratio 

= chordwise deflection function 

= velocity potential 

= spanwise deflection finction 

= frequency of vibration 

( )* = Laplace transform of ( ) 

vi i 



I. INTRODUCTION 

In  t h e  development of design c r i t e r i a  t o  prevent t h e  f l u t t e r  of f l a t  
panels,  panel geometries with very low aspect r a t i o s  are of p a r t i c u l a r  
i n t e r e s t  i n  view of t h e  panel configurations on the  Saturn vehicle .  For 
such geometries, very l i t t l e  information, e i t h e r  t h e o r e t i c a l  or  experi-  
mental, i s  ava i lab le  p a r t i c u l a r l y  i n  t h e  low supersonic region,  The lack  
of adequate design c r i t e r i a  necess i ta tes  t h e  development of new theor ies  
t o  supplement present  information and t o  guide the  proper design of experi- 
mental models. 

I n  t h i s  repor t ,  a new method for predic t ing  t h e  f l u t t e r  boundaries 
f o r  a very low aspect r a t i o  f la t  panel i n  low supersonic flow i s  presented. 
The method i s  based on l inear ized ,  three-dimensional p o t e n t i a l  flow theory 
and small def lec t ion  p l a t e  theory. In  the  analysis  Laplace transform 
techniques a re  employed, which circumvent t he  need f o r  introducing a la rge  
number of' deformatiou r - L i i i C t T G z s  nzeh BP ir? +.he Ritz-Galerkin method. Only 
t h e  simply supported edge condition has been considered, although other 
edge conditions can be t r ea t ed  i n  a similar manner. 

Stat ionary wavy w a l l  type models with wave length comparable t o  t h e  
wave length of t y p i c a l  panel f l u t t e r  modeshapes have been se lec ted  as the  
most su i t ab le  fo r  gathering i n i t i a l  experimental information on the  e f f e c t s  
of a turbulent  boundary layer  on the  pressure d i s t r i b u t i o n  of a f l a t  o sc i l -  
l a t i n g  panel i n  low supersonic flow. Of p a r t i c u l a r  importance f o r  t he  
ilestgn of the  models i s  t h e  se lec t ion  of a su i t ab le  amplilude t o  wave-length 
r a t . i o .  An analysis  per ta in ing  t o  t h i s  problem is giveii. 

To inves t iga te  the  e f f ec t s  of a turb?iient buxdary i q e r  0" var iab le  
thickness  over the  wavy w a l l  model, a boundary layer  probe extending from 
t h e  s t i ng  support and capable of t ravers ing  the  boundary layer  i n  three  
mutually perpendicular d i rec t ions  was designed. Consideration w a s  given 
t o  a probe design which allows accurate measurements of both t o t a l  and 
s t a t i c  pressures i n  order t o  obtain adequate experimental information f o r  
a descr ip t ion  of t h e  ve loc i ty  d i s t r ibu t ion  and the  pressure va r i a t ion  
within the  boundary l aye r .  
t h e  w a v y  w a l l  models, which supply t h e  pressure d i s t r i b u t i o n  on the  surface,  
should provide su f f i c i en t  information f o r  a comparison with ava i lab le  
aerodynamic theor ies .  
i n  t h i s  r epor t ,  

This instrumentation together  with t h a t  of 

The probe design and instrumentation a re  presented 

11. PANEL FLUTTER SURVEY 

A b r i e f  l i t e r a t u r e  search was conducted t o  c o l l e c t  information on 
design c r i t e r i a  and ava i lab le  aerodynamic theor ies  f o r  t h e  supersonic 
f l u t t e r  of f l a t  panels.  The most recent  information per ta in ing  t o  t h i s  



* 
problem i s  given i n  [l] - [14]. 
towsrds design c r i t e r i a  a r e  [3], [9], and [ll]. 
new methods of ana lys i s  a r e  [l], [ 2 ] ,  [ 8 ] ,  [lo], [13], and C141. Attempts 
t o  account f o r  t h e  e f f e c t s  of a turbulent boundary layer  a r e  given i n  [l] 
and [12]. 
rnade . 

The r epor t s  s p e c i f i c a l l y  or iented 
The repor t s  concerning 

I n  [4] - [ 7 ] ,  a comparison between theory and experiment i s  

The only repor t  dealing d i r e c t l y  with the  problem of pa r t i cu la r  
i n t e r e s t  here ,  t he  very low aspect r a t i o  case,  i s  t h a t  of Dowell [lg. 
Dowell mskes the  assumption t h a t  the  panel has an i n f i n i t e  chord and 
t r e a t s  the  problem by means of the t r ave l ing  wave so lu t ion  of Miles [lo]. 
He a l so  pos tu la tes  t h a t  f o r  a panel whose length i s  long compared t o  t h e  
c r i t i c a l  wave length ( f i n i t e  chord panel ) ,  h i s  model should adequately 
describe,  a t  l e a s t  asymtotically,  t h e  t r u e  f l u t t e r  boundary. 

Theoretical  and experimental r e s u l t s  ind ica te ,  however, t h a t  t he  
assumption of a f l u t t e r  modeshape i n  the  form of a t r ave l ing  wave i s  
not r e a l i s t i c  for t he  f i n i t e  chord panel even when the  aspect r a t i o  i s  
very s m a l l .  The f l u t t e r  modeshapes usua l ly  found are increasing i n  
amplitude towards the  t r a i l i n g  edge of the  panel. This ce r t a in ly  holds 
t r u e  for aspect r a t i o s  down t o  1/10 [2]. Since t h i s  behavior i s  p a r t l y  
uuc L W  L l l ?  1 ~ I ~ C L b ~ V l l  V I  U11G wave a" " I I L  "Iu.111116 bU6U \ . . ' L I " ' L  

wave solut ion neglec ts ) ,  t he re  i s  no reason t o  expect t h a t  s imilar  r e s u l t s  
w i l l  mt be cha rac t e r i s t i c  f o r  aspect r a t i o s  of 1/60. 

> - - -  I- I L  - - , 7 1 - - A - : - -  -4- IL- ----.- -+ +L- +nn:1:nn Oi4"O fGh:nh  t>n +-r2."rPlinm 
b 

The most d i s turb ing  cha rac t e r i s t i c  of the  t rave l ing  wave solut ion 
i s  t h a t  f l u t t e r  i s  predicted when the  r e l a t i v e  ve loc i ty  between the  forward 
ve loc i ty  and wave ve loc i ty  i s  subsonic. This i s ,  of course,  i n  d i r e c t  
contradict ion t o  the  more conventional panel f l u t t e r  ana lys i s ,  where t h e  
r e l a t i v e  ve loc i ty  must be supersonic i n  order t o  obtain f l u t t e r .  I n  t h e  
ensuing sect ion a method f o r  solving the  very low aspect r a t i o  case has ,  
therefore ,  been derived by extending the  conventional supersonic panel 
f l u t t e r  analys i s . 

111. THEORETICAL CONSIDEMTIONS 

A. Eauations of Motion 

Consider t h e  uniform rectangular panel of f i n i t e  chord, a , and f i n i t e  
span, 2b , shown i n  Fig. 1, exposed t o  supersonic flow on the  s ide  z > 0 . 
From small def lec t ion  p l a t e  theory, t he  equation of motion fo r  t he  panel 
i s  t8,91 

DV 4 w f pshwtt + p u = o  

* 
Numbers i n  brackets r e f e r  t o  the  bibliography. 
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In Eq. (l), w is the transverse displacement in the z-direction, 
the pla te  

the aerodynamic pressure of the air flow at the side 
the material density, h 

ps D the plate bending stiffness 
thickness and p 
z > o .  

U 

It is convenient to introduce dimensionless variables x' , y '  , e t c . ,  
by writing 

x = bx' ; y = by' 

w = bw' (2 1 ; pu - 3 '  - p pu 

where p is the air density and U is the forward velocity. 

Dropping the primes in the ensuing discussion, Eq.  (1) in dimension- 
less form becomes 

4 
P shb p$b3 

w + 2w + w  +- w +-  D P u z 0  4x 2x, 2Y 4Y D tt 

The panel boundaries in dimensionless form are at 

x = o  ; x = 2 s  

and y = - 1  + 

Substitution in (3) gives 

where 

- w4x + %x,2y + w 4y + Rk2W + spu = 0 

(3 1 

(4 1 

and wb k =r 
3 



The parameters R and S can be wr i t t en  i n  terms of the more 
conventional panel f l u t t e r  parameters 

and 

where 

Since 

E = modulus of e l a s t i c i t y  

v = Poisson's r a t i o  

12 (1 -VZ)  

t he re  follows from (7) and (8), 

and 
63 S = 2 4 -  3 IJJ 

(9) 

I n  order t o  account f o r  t h e  e f f ec t s  of s t r u c t u r a l  Lmping, t h e  f r s t  
(1 + j g )  and t h r e e  terms on the  left-hand s ide of (6) a r e  mult ipl ied by 

t h e  equation of motion becomes 

- 
w + 2;; + w + k2W + 3fU = 0 

4x 2x, 2Y 4Y 

where 

The panel f l u t t e r  problem consis ts  of f inding f o r  spec i f i c  values of 
Mach number, M , s t r u c t u r a l  damping, g , and inverse aspect r a t i o ,  
t h e  p a r t i c u l a r  combination of the parameters p and 6 which s a t i s f i e s  
(lO),together with (8),  (9), (ll), and the  boundary conditions of t he  panel 

s = a/2b 



configuration. 
of a va r i e ty  of simplifying assumption mainly i n  the  der ivat ion of t h e  
aerodynamic pressure d i s t r ibu t ion .  
design c r i t e r i a  developed are r e s t r i c t e d  t o  e i t h e r  spec i f i c  ex terna l  flow 
conditions o r  assumed panel f l u t t e r  behavior such as the  t rave l ing  wave 
solut ions.  

The magnitude of t h i s  problem has l e d  t o  t h e  introduction 

A s  a consequence, t h e  majority of 

O f  pa r t i cu la r  i n t e r e s t  i n  t h i s  repor t  i s  the  slender panel configuration 
with f i n i t e  chord length and inverse aspect r a t i o  i n  t h e  order of 10 t o  
60. The configuration i s  exposed t o  low supersonic flow, which necess i ta tes  
the use of l inear ized,  three-dimensional aerodynamic theory.  

An appl icat ion of t he  Ritz-Galerkin method, whereby a su i tab le  set  of 
orthogonal def lect ion functions sat isfying t h e  boundary conditions are 
introduced, seems un jus t i f i ed  since it i s  t o  be expected t h a t  a la rge  
amount of generalized coordinates w i l l  be necessary f o r  a s a t i s f ac to ry  
solut ion with inverse aspect ratios i n  t h e  order of 10  t o  60. 
t he  la rge  amount of generalized coordinates w i l l  a l s o  lead t o  d i f f i c u l t i e s  
i n  computation t o  maintain accuracy. 

I n  addition, 

The t rave l ing  wave solut ions of Miles [lo] and Dowel1 [l3] a re  in- 
t e r e s t ing ,  but they require  i i ~ e  ass-ixptlo;l thnt t h e  p c e 1  ~ h n r ?  ?s i n f i n i t e  
so t h a t  no proper account of t h e  r e f l ec t ions  of t he  leading and t r a i l i n g  
edge on the  panel motion can be given. I n  addition, i n  the  t rave l ing  wave 
solut ions the f l u t t e r  modeshape i n  t h e  chordwise d i r ec t ion  i s  specif ied 
a t  t h e  onset of the  analysis  and t h e  v a l i d i t y  of t h i s  assumption can, 
therefore ,  only be ve r i f i ed  by an analysis  of a more general  nature o r  by 
experiment a t  ion.  

It i s  expected, however, tha t  t he  proper representat ion of t he  
def lec t ions  i n  t he  chordwise d i rec t ion  i s  more important than those i n  
t h e  spanwise d i rec t ion  since t h e  d i rec t ion  of f l o w  i s  i n  the  chordwise 
d i rec t ion .  
been obtained by introducing a specif ic  spanwise def lect ion function i n  
t h e  ensuing analysis .  

S i m i l a r  t o  the  procedure in [91, simplif icat ion has, therefore ,  

Returning t o  the  solut ion of Eq. (lo), l e t  

An appropriate choice for t he  spanwise def lect ion function, Y(y) , i s  
t h e  modeshape associated with the lowest na tu ra l  frequency of a beam with 
span y = 2 . For simply supported s ide edges, Y(y) becomes 

TI Y(y) = cos - y 2 IYI 5 1 

; IYI  ' 1 (13 

5 



Subst i tut ion of (12) and (13) i n  (10) y ie lds  

Now, t ake  t h e  Laplace transform with respect  t o  x . This gives,  with 
the  def in i t ions  

L[m(x)l = @*(p) 

and the  appl icat ion of the  simply supported boundary condition a t  
x = 0 [ Q ( O )  = V ( 0 )  = 01, 

I TI  
2 2  2 

A{[(p2 - t) + Ek2]@* - [p' - 2($) ]@'(O) - @ ' I 1  ( 0 ) ~  cos y 

+ S p * = O  ; 
U 

I n  (16), t h e  primes denote d i f fe ren t ia t ion  with respect t o  x . 
The Laplace transform and other approximatioas of t he  aerodynamic 

pressure d i s t r ibu t ion  for panel f l u t t e r  analysis  w i l l  be defined i n  t h e  
iiext section. 

1) The Laplace transform of t he  aerodynamic pressures.  Since t h e  
region between Mach 1 and / 2  i s  of  pa r t i cu la r  i n t e r e s t ,  t he  aerodynamic 
pressures a re  obtained from l inear ized,  three-dimensional aerodynamic 
theory.  

The governing equation t o  be s a t i s f i e d  by the  ve loc i ty  poten t ia l ,  cp , 
i s  

where M i s  the  freestream Mach number and em i s  the speed of sound a t  
i n f i n i t y  . 

The boundary condition on tp i s  

= w + uwx %/,=o t 



The pressure at the upper surface in terms of cp is given by 

For convenience, we introduce again the dimensionless parameters of 
(2) and also 

cp = buy' 

and drop the primes in the ensuing discussion. 

Since the  motion at flutter is harmonic, let again 

and 

When 

-G(x,y) = A E ( X )  cos ry ; -0 < y < sco (22 1 
we find fromthe analysis of Luke and St. John [ 1 4 ] t h a t  f o r  supersonic 
flow the velocity potential satisfying (17) and (18) and the aerodynamic 
pi'ess-ures can be written in the dimenslonlesa forms 

and - = -(jkw + wX) 
PU 

where 
B = .J.'-l 

(24) 



Taking t h e  Laplace transform with respec t  t o  x , yields, s ince  
cp(0) = @ ( O )  = 0 ,  

(26) 

( 2 7 )  

A 6* = - cos ry (p + j k )  @* G* 

- and 
* = - (p t  j k )  @* 

pu 

Now, t h e  Laplace transform of G {see Eq.  (25) and [15] pp, 236 
(3411 i s  

1/2 
G* = ~ ( p  + jii)2 + $1 ( 2 8 )  

Combining (26),  (27),  and (28), the Laplace transform of t h e  aerodynamic 
pressures  corresponding t o  (22) becomes 

I n  order t o  
corresponding t o  

obtain the  Laplace transform of t h e  aerodynamic pressures 
t h e  def lec t ion  f’unctions 

w = A$(x) Y (y) (30 1 

where W(y) i s  given by (13), we represent  ‘Y(y) i n  Fourier cosine 
i n t e g r a l  form, 

Using ( 2 2 ) ,  (29),  and (31), t h e  Laplace transform of t h e  aerodynamic 
pressures  corresponding t o  (30) becomes 

Because of the  appearance of t h e  Laplace transform var iab le  p i n  
t h e  kernel  of t he  in t eg ra l ,  t h e  expression (32) becomes r a the r  una t t r ac t ive  
f o r  use i n  a panel f l u t t e r  analysis .  To study t h e  f l u t t e r  cha rac t e r i s t i c s  
of very slender panels,  t h e  assumption has ,  therefore ,  been made t h a t  t h e  
pressure  d i s t r i b u t i o n  a t  f l u t t e r  can, with adequate accuracy, be described 
by using the  approximation (29) f o r  def lec t ion  functions of t h e  form (30 ) .  



2 )  The aerodynamic pressures f o r  wavy walls, The aerodynamic 
pressures on s ta t ionary  or t rave l ing  wavy  walls of i n f i n i t e  extent i n  
t h e  chord- and spanwise d i r ec t ion  can be derived from t h e  well-known 
Ackeret so lu t ion  L16-J. 

L e t  t h e  s ta t ionary  wavy wall boundary be given by 

(33 iXx w = Re(Ae cos ry) 

The l inear ized  equation f o r  t h e  veloci ty  p o t e n t i a l  i n  a flow of Mach 
number M above the  w a l l  i s  [see Eq. (17)] 

1' 

For flow t o  t h e  r i g h t  ( i .e. ,  i n  t he  pos i t i ve  x-direct ion) ,  t h e  boundary 
csndlt lsr:  i e  

= M e w  l a x  

and t h e  pressure perturbation at the w a l l  i s  

p, = - p M 1 " c D ~ x I z = o  

For flow t o  t h e  l e f t ,  t he  boundary condition i s  

and t h e  pressure per turbat ion at the  w a l l  i s  

Let 

i Ax 
(D = Re[e cos ry  h ( z ) ]  

(35 

(38) 

(39) 

To s a t i s f y  (34), h ( z )  should s a t i s f y  



h - [X 2 (1-y2) + r 2 3 h = 0 
Z Z  

The general  solut ion i s  
(Yz h = Be 

where + 2  2 112 
(Y = - [ I  (l-M1 ) + Y*] 

The solut ion s p l i t s  into cases 

and 

Case b: 
i2(i-~,2) + r 2 < o 

i n f i n i t y  g+ves 

c J 
and from (35), f o r  flow t o  the  r igh t  

w h i l e  from (37), fo r  flow t o  t h e  l e f t  

(47) 

10 



Using (36) and (38), there  follows t h a t  f o r  flow t o  t h e  r i g h t  o r  l e f t  

, t h e  solut ion of (40) which s a t i s f i e s  t he  For M1 > ( 1 + - rz)1’2 
h 

condition t h a t  t he re  be no incoming disturbances from i n f i n i t y  y ie lds  

fo r  flow t o  the  r i g h t ,  c and J 

cos ry> 

Y! c A 

for flow t o  the  l e f t  or r i g h t .  

The pressure per turbat ion,  from ( 3 6 ) ,  i s  

7 
i Ax e cos ry i h  A 

2 112 (M1 2 -1) - Lj 
x2J 

- - pc_;l~;~e 
PU 

for flow t o  t h e  r i g h t ,  while from ( 3 8 ) ,  

11 



r 7 
I .  

cos r pu 

f o r  flow t o  t h e  l e f t .  

The aerodynamic pressures  on a t r ave l ing  wavy wall can r ead i ly  be 
derived from t h e  so lu t ion  of t h e  s ta t ionary  w a v y  wall. 
boundary be given by 

Let t h e  wavy wal l  

i x j x  t t) w = Re[Ae cos ry] (54) 

and t h e  flow ve loc i ty  above the  wall i n  t he  pos i t i ve  x-direct ion be given 
by U = Me, . 
negative x-direct ion with ve loc i ty  w/h . Clearly,  (54) represents a t r ave l ing  wave moving i n  the  

Since the  r e l a t i v e  ve loc i ty  between the  flow and the wave i s  

t h e  pressures on t h e  t r ave l ing  wave can be obtained from (48), (52), and 
(53) by subs t i t u t ing  

Defining 

M 1 = M + -  w (55 1 

(56) 

we f i n d  t h a t  t h e  aerodynamic pressures on the  t r ave l ing  wavy w a l l  (33) 
become 

where 



I -  

~ 

-. The i n t e r e s t i n g  case f o r  t h e  determination of panel f l u t t e r  char:wl,cr- 
i s t i c s  i s  the  aerodynamic pressure d i s t r i b u t i o n  corresponding t o  a travelinr: 
wave which t r a v e l s  i n  t h e  posi t ive x-direction since waves travelinrr i t i  
t h e  negative x-direct ion cannot be r e a l i z e d  p r a c t i c a l l y .  

We, therefore ,  define the  wavy w a l l  boundary by 

-iXx w = R e  (Ae cos ry  e 

where X and r a r e  considered posi t ive.  

The r e l a t i v e  ve loc i ty  between the  flow and the  wave has t h e  Mach 
number 

which i n  the  most p r a c t i c a l  cases may a l s o  be considered pos i t ive .  

where 

h y 2 A  

and 

E =/- 
Note t h a t  s ince M1 as wel l  as E a r e  taken t o  be posi t ive,  only two 
cases remain. 1 , 
so  t h a t  % i s  always smaller than 8 . When the r e l a t i v e  ve loc l ty  is 

can be e i t h e r  greater  or  smaller supersonic, however, 

considerable importance when a more general  spanwise var ia t ion  of t h e  
t rave l ing  wave i s  assumed. 

Also, when the  r e l a t i v e  ve loc i ty  i s  subsonic, 

than e depending on . It w i l l  be seen t h a t  t h i s  is of 



We introduce, as before, dimensionless variables by writing 

x = bx' ; y = by' 
h 

w = bw' ; p, = plfpu' 

A = bA' ; k = uib/U 

and drop the primes in the following discussion. 

The aerodynamic pressures in dimensionless form corresponding to 

(64) 
-ihx cos ry eimt) w = Re(Ae 

tnen yields 

- 
= Re[Q(M,k,k,r) e -ihx cos ry e 

PU 

where 

2 1/2 
; M(1 - E) > (1 + 3) 

h 

2 
- h ( l  - F) A - -  

where 

The aerodynamic pressures corresponding to the wave 

w = Re[Ae-ihX Y (y) ei&] (67) 



can be obtained from (64) and (65) by applying (31). 

mere follows, if 41 - t) < 1 , 

pu = Re 

2 
h ( 1  - :) cos r cos ry dr 

e e 
I , ,  

while, if (1 - !) > 1 , 

2 
ih(1 - 5) cos r cos ry dr 

CL 
1 1 

where 
2 1/2 q = X[I+ - ;) - 11 

The expression (69) corresponds with those of Dowel1 in [13]. The 
separation of the integral in two parts as in (70) has not been performed 
in [13]. 

The dimensionless pressure distribution in supersonic flow corresponding 
to the stationary wavy wall, 

w = A sin Xx Y(y) (71 1 

follows directly from (70) by substituting, M > 1 and k = 0 , thus 



C 

. 
cos Ax cos r cos ry dr 

(5 - r2)(A2p2 - r2) pu 2 1/2 O 

sin Ax I cos r cos ry dr -sm 2 1/2 
1’ (+ - r2)(r2 - ~ 2 ~ 2 )  

where 

The aerodynamic pressures in subsonic flow, M < 1 , corresponding 
to (71) are obtained from (69 ) ,  

The expressions (72) and (73) can be used for estimating the pressure 
distribution away from the leading edge on the three-dimensional wavy wall 
models to be tested at the National Aeronautics and Space Administration, 
Axes Research Center. 

IV. SOLUTION OF PANEL FLUTTER EQUATIONS 

Utilizing the approximation (29) with r = n/2 for the Laplace 
transform of the aerodynamic pressures, the Laplace transform of the 
flutter equations of motion are obtained by canbining (16) and (29), 

(74) 
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Consequently, 

A l + ' ( 0 )  + @" '  (0) @* = 
A 2 + A A  -1 

3 4  

where 

2 

A 2 ( P )  = (P' - g) - Rk2 

(75)  

To obtain the  inverse Laplace transform of +* , we wri te  (75) i n  
t h e  more convenient f o r m  

(B1 + B2A4-1)@'(0) + (B3 + B4A4")@'" (0) 

C 
@* = 

and 2 2  2 
3 C ( p )  = A2 A4 - A 

(77) 

We assume t h a t  C(p) has ten  d i s t i n c t  c o m p l e x  roots ,  p,, (r = 1,2,. . .lo), 
so t h a t  [see (75)] 



-1 10 X 
L-l(Bl + B2A4 P, (X-5 1 

C e-i'tr rl (TF)  fit 
r=l r=l 

and 

Thus, 

Q(x) = D,(x)@'(O) + D2(x)@"' (0) (81 1 

To s a t i s f y  boundary conditions a t  t h e  t r a i l i n g  edge of t h e  panel,  
we w i l l  a l so  need Q"(x) . 
by d i f f e r e n t i a t i n g  (81), a more convenient form i s  obtained by wr i t ing  

Although t h i s  quant i ty  can r ead i ly  be obtained 

P-~l+i(oj 3 + P-P::: 3 (oj 
(Q!!)* = - P'(0) (82 j A 2 + A A  -1 

3 4  

L e t  
= - (3 4 + Rk2 

Using (76), t he re  follows 

-1 A 2 + A A  3 4  

18 



and thus 

I -  

where 

2 
3 B5(p) = A A  A + A  2 5 4  

B6(p) = - (A A + A A )A 2 
2 3  3 5  4 

Bg(p) = - A A A 2 
3 6 4  

and f i n a l l y ,  

' P " ( x )  D3(x)@'(0) + D~(x)@"' ( 0 )  

where 

and 

The f l u t t e r  condition i s  obtained by sa t i s fy ing  the  boundary conditions 
a t  t h e  t r a i l i n g  edge of t he  panel. 
we must have 

For t h e  simply supported t r a i l i n g  edge, 

or 

w = W" = 0 a t  x = 2s 

@(2s)  = Q"(2s) = 0 



The f l u t t e r  condition follows from (81), (871, and (911, 

E = E R + j E I  = D,(2s)D4(2s) - D2(2s)D3(2s) = 0 (0;)) 

The solut ion cons is t s  of a t ra i l -and-error  procedure. To sat isf 'y  
( 9 2 ) ,  1.1 and k a re  chosen t o  be f r e e  parameters. For given values or' 

M , g , 6 and s , 1.1 and k a r e  varied u n t i l  both E and E arc  
zero.  
i n  t h e  p - s plane can thus be obtained f o r  spec i f i c  values of M , p , 
and 6 . 

I s . R  F l u t t e r  boundaries The procedure i s  then repeated fo r  d i f f e r e n t  

Although not presented here ,  the clamped leading and t r a i l i n g  edge 
condition can be t r ea t ed  s imi la r ly ,  

To f a c i l i t a t e  numerical evaluation, t h e  expressions (79)- (81) and 
(87)-(92) have been wr i t ten  i n  a s l i g h t l y  d i f f e r e n t  form. Since it i s  
t h e  object ive of t h i s  program t o  obtain f l u t t e r  boundaries f o r  small aspect 
r a t i o  panels (s  >> 1) , t h e  terms ePrX i n  t h e  Eqs. (79 ) ,  (80),  (88), 
and (89) become la rge  when Re(pr) i s  pos i t ive  and la rge .  This could 
cause overflow i n  the cuiuptitei-. 
t h e  roots ,  

To cirz-~y-;cd tk.5:: 2 i f f i c l d t > r j  we o r d e r  
pr , with respect  t o  t h e i r  r e a l  pa r t s  i n  t h e  following way. 

and l e t  

Re(P1) = Y 

Next, l e t  

and 

Since 

(94 1 

(95 1 

(96) 

(97) 
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.. 
I 

B1(x)-n4(x) a re  given by t h e  following expression, 

Note t h a t  i n  (98) t h e  upper limit of t h e  exponential  terms i s  1. 

The f l u t t e r  condition becomes 

V. NUbERICAL RFSULTS AND DISCUSSION 

During t he  c m r s e  of t h i s  research program an attempt has been made 
t o  obtair; n m e r i c a l  r e s u l t s  for the very l o w  aspect r a t i o  cases.  
cm>lex i ty  d' t h e  fht . t .er  eqiI.at.lons and the  l imi ted  amount of t i m e  ava i l -  
s b l e  has prevented t h e  completion of these e f f o r t s .  

The 

A t  present,  it i s  believed t h a t  t h e  debugging of t he  computer program 
f o r  the  Burrough's B-5500 has been completed. 
program, a comparison with previously derived r e s u l t s  [2] for  
g = .01 , 6 = 22.738 , and s = 
This comparison indicated a discrepency of 30 per  cent i n  v , although 
s imi la r  v-k diagrams as  previously derived were obtained. I n i t i a l l y ,  
it was thought t h a t  f'urther debugging i n  t h e  computer program was necessary. 
However, t he  s e n s i t i v i t y  of t h e  panel f l u t t e r  boundary t o  small changes i n  
t h e  low supersonic region and t h e  appl icat ion of a more prec ise  method of 
ana lys i s  could a l s o  h m e  caused the discrepency. It has,  therefore ,  been 
concluded t h a t  a more extensive ve r i f i ca t ion  of r e s u l t s  i s  required,  Since 
such a ve r i f i ca t ion  i s  beyond the scope of t h e  present pro jec t ,  it i s  
proposed t o  continue t h i s  work under Contract NAS8-20100 t i t l e d ,  "Experimental 
Research on Panel F l u t t e r  Aerodynamics. I' 

To gain confidence i n  t h e  
M = 1.35 , 

(aspect r a t i o  = 4 )  has been made. 
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VI. MODEL AND BOULTDAEY LAYER PROBE DESIGN 

Stat ionary wavy wal l  type models with wave length comparable t o  t h e  wave 
length of t y p i c a l  panel f l u t t e r  modeshapes have been selected as  t h e  most 
su i t ab le  for gathering i n i t i a l  experimental information on t h e  e f f e c t s  of a 
turbulent  boundary layer  on a f l a t  o sc i l l a t ing  panel i n  low supersonic flow. 

The determination of model parameters and t5e  design of a boundary 
layer  probe a re  given i n  t h e  next sect ions.  

A. Determination of Wavy Wall Model Parameters 

It i s  desired t o  estimate the  wave parameter c / 4 ,  (see f igd re )  f o r  a 
s t a t iona ry  wavy w a l l  model which w i l l  exhib i t  measurable pressure differences 
referenced t o  f r e e  stream with deviations of t h e  order of f i v e  per  cent o r  
l e s s  from l i n e a r  aerodynamic theory. 
and i t s  deviat ion on t h e  wave parameter i s  e x p l i c i t l y  defined f o r  two- 
dimecsional supersonic flow by the  following extension of l i nea r i zed  theory. 

The dependence of t h e  pressure d i f fe rence  

t h e  equation f o r  t h e  w a l l  i s  given by 

x 2 = c s i n  (F xJ 
with l o c a l  slope 
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Now, using t h e  charac te r i s t ic  r e l a t i o n  f o r  isentropic  waves [17], 

.and t h e  isentropic  flow r e l a t i o n  

One may eliminate M and expand (p - p,) i n  terms of M, and A€l , 
where M, and p, a r e  the  fYee-stream Mach number and pressure,  
respect ively,  y i s  the  r a t i o  of spec i f ic  heats ,  and A0 i s  t h e  turning 
angle of t h e  l o c a l  flow from t h e  free-stream direct ion.  
s e r i e s  expansion of the  dimensionless pressure difference i s  

The r e s u l t i n g  

P-P, 
2 = Cl(AO) + C2(A0l2 + C3(he)3 + .... 

h m M ,  

with A8 pos i t ive  when measured counterclockwise from t h e  free-stream 
flow di rec t ion .  The coef f ic ien ts  are given as: 

4 2 M c3 =- C% bW 2 - &) 5 + 7  

W 

-by 4 + 28y3 + lly 2 - ay - 3 1 
+ 24(y + 1) 

3 k 2  - 4/3)2 + 
4(Mw2 - $7’2 
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The l i n e a r  or  f i r s t  order approximation of - i s  defined then as 
p, 

and t h e  second order approximation as 

The deviat ion of the  second order approximation from t h e  f irst  i s  defined 
by 

so t h a t  

c2 
lemaxl = - 

c1 'emax 

It fol lows from t h e  defini+,ion of t he  loca l  slope t h a t  

2nc IAem,I = 

The m a x i m  deviation i s  then .e = o  , ? ,  4 ,  .... 1 corresponding t o  x 
given as 

c2 c le  1 = 2n - max 

For a i r  ( y  = 1.4)  t h e  maximum pressure difference according t o  the  
l i n e a r  theory 

and the  m a x i m u m  deviation \emaxI are cmputed f o r  values of Mach number 
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I -  

i n  t h e  low supersonic range and 

The r e s u l t s ,  which a re  shown i n  

values of t he  wave parameter, 

e/& < - 

Fig. 2 ,  i nd ica t e  t h a t  a t  M = 1.35 ( the 
Mach number c r i t i c a l  from a panel f l u t t e r  point  of view) t h e  wave parameter 
e/& should be approximately 5 X 10-3 f o r  a f i v e  per cent deviat ion i n  
pressure from l inea r  theory. The corresponding values of I (Ap/p,),lma 
a re  of t he  order of 0.10 which should be adequate f o r  accurate measure- 
ment. 

B. Probe Design 

1) Mechanism. The following discussion concerns the  design of a 
probe ( F i m r  t h e  two-foot transonic wind tunnel  a t  the  National 
Aeronautics and Space Administration, Ames Research Center, t o  measure 
t h e  pressure d i s t r ibu t ions  along wavy-wall models. 
of moving i n  th ree  mutually perpendicular d i rec t ions  with the  t w o  movements 
p a r a l l e l  t o  t h e  model manually controlled,  and t h e  movement perpendicular 
t o  t h e  model automatically controlled by a computer which i s  present ly  i n  
use a t  Ames. 
per cent of t he  t e s t  sect ion cross-sectional area.  However, because of 
problems i n  t h e  s t r u c t u r a l  i n t eg r i ty  of t h e  probe mechanism, it w a s  necessary 
t o  increase t h i s  f igure  t o  1.525 per  cent.  An area char t  appears as Fig. 4. 

The probe i s  capable 

The desired maximum cross-sect ional  area of t h e  probe i s  1.5 

The general  configuration of t h e  probe mechanism i s  d ic ta ted  by tunnel,  
aerodynamic, and mechanical design considerations.  To meet tunnel  and 
aerodynamic requirements, a l l  tubular sect ions a r e  terminated i n  cones 
aid a l l  other sect ions i n  wedges with r n 3 x i ~ ~ ~  inchc?ed angles of I6 degrees. 
Slncz  the croaa-seztlonal area is l imited ar,d the streT?c+h 0 --- of t,he probe 
car? m l y  3e increased e i t h e r  by increasing t h e  cross-sect ional  area o r  by 
increasing the  chord lengths  of the aerodynamic surfaces (which resu l t s  i n  
higher l i f t )  a compromise with respect t o  t h e  safe ty  f ac to r s  f o r  y i e ld  
and ul t imate  s t r e s s  had t o  be made. A s t r e s s  analysis  of the  e n t i r e  mecha- 
nism appears i n  a subsequent section of t h i s  repor t .  

Btreme fab r i ca t ion  d i f f i c u l t i e s  are presented i n  machining longi- 
t ud ina l  holes i n  the  s o l i d  wedge s t r u t s  and i n  machining wedge shapes t o  
slide ins ide  other  wedge shapes. Each of t h e  wedge sect ions w i l l ,  therefore ,  
be fabricated i n  two sect ions and joined a f t e r  machining with s i l v e r  braze 
a l l o y  Easy-Flo 45. 
d i f f i c u l t i e s  t h e  mater ia l  chosen for these sect ions was 17-4 F'H s t a i n l e s s  
s teel .  
t h e  braze a l loy  chosen has a flow temperature of 1125'F, t h e  hardening and 
joining processes can be combined. Complete drawings of t h e  probe mechanism 
w i l l  be f'urnished under NASA Contract No. NAS8-20100. 

To obtain maximum strength and obvivate corrosion 

Since the  hardening temperature f o r  t h i s  mater ia l  i s  1150°F, and 

All movements of t he  probe m e  accomplished by means of D.C. motors, 
with su i t ab le  gear reductions, located i n  open-loop e l e c t r i c a l  con t ro l  
c i r c u i t s .  The magnitude of motion of any of t h e  three  probe movements i s  
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control led by t h e  duration of an e l e c t r i c a l  pulse t o  t h e  d r ive  motor. 
Thus, no means a re  avai lable  f o r  moving the  probe t o  a predetermined 
posi t ion.  However, each dr ive un i t  i s  attached t o  a potentiometer which 
accurately r e f l e c t s  t he  pos i t ion  of t h e  probe a t  any point within the  
range of t r a v e l  of t h e  probe. 

The probe i s  capable of a t o t a l  of 60 inches of t r a v e l  i n  t h e  d i r ec t ion  
.of t h e  tunnel  ax is .  This t r a v e l  i s  accomplished i n  t en  d i sc re t e ,  six-inch 
in t e rva l s .  Within each six-inch in t e rva l ,  t h e  probe motion i s  accomplished 
by an open-loop, direct-current  drive motor and pos i t ion  potentiometer 
as  discussed above. 
tunnel  ax is ,  i s  l imited t o  t h ree  inches, again accomplished by open-loop, 
direct-current  motors and posi t ion potentiometers. 

Ver t ica l  and hor izonta l  motion, with respect  t o  t h e  

a )  Outboard s t r u t  and motor pod. Fig. 5 presents a sketch of t h e  
outboard s t r u t  and motor pod. The motor pod has been sectioned t o  show 
the  dr ive  and potentiometer assembly as  w e l l  a s  t he  pressure transducer 
locat ion.  
s t r u t s  cons is t s  of a .015 horsepower, 16,000 rpm, 28-voit D.C. motor and 
gear t r a i n  which drives, through a worm gear, a 5-40 screw which, i n  tu rn ,  
d r b ~ e s  t.hp striit. 
20: l .  Thus, f o r  one complete turn of t h e  motor t h e  s t r u t  moves 
1/20 X 40 = 0.00125 inches. 
16,000 rpm, t h e  maximum t r ans l a t iona l  speed of t he  moveable s t r u t  w i l l  
be 0.33 inches/second. However, since t h e  motor requires  a f i n i t e  t i m e  
t o  come up t o  speed, t h e  ac tua l  t r ans l a t iona l  ve loc i ty  of t h e  s t r u t  w i l l  
depend on the  durat ion of t h e  energizing pulse.  It i s  an t ic ipa ted  t h a t  
the  average t r ans l a t iona l  veloci ty  f o r  short  pulses will probably be 
0.1 inches/second, which should be compatible with t h e  system present ly  
i n  use a t  Ames. 

The dr ive  system fo r  the moveable port ion of t h e  outboard 

The motor reduction r a t i o  through the  worm gear i s  

Since t h e  maximum speed of t h e  motor i s  

- me posit ioil  iiiiilcator i s  a 1c)X! ohm, In-turr? poteot,inmeter manu- 
factured by t h e  Spectrol  Electronics Ccporat. ion of S a n  Gabriel, Cal i fornia .  
The potentiometer i s  geared t o  the  motor through a 3 0 6 ~  reduction; there-  
fo re ,  f o r  0.001-inch t r ans l a t iona l  movement of t h e  s t r u t ,  t h e  potentiometer 
t u rns  through 0.94 degrees or  0.277 ohms. The resolut ion of t h e  potentio- 
meter i s  0.052 per cent o r  0.52 ohms; thus,  t h e  pos i t ion  of t h e  prob? i n  
t h e  d i rec t ion  perpendicular t o  the  model can be measured a t  bes t  t o  -0.002 
inches.  Since t h e  t o t a l  movement of t he  s t r u t  i s  three  inches, t h e  potentio- 
meter t u rns  through 9.4 turns  or  940 ohms f o r  maximum extension. 

The transducer has been located i n  t h e  forward end of t he  motor pod 
t o  reduce the  length of t he  pressure tubing. From t h i s  point ,  it i s  
necessary t o  car ry  only t h e  transducer wiring and the  reference pressure 
tube through t h e  mechanism t o  the recorder.  Also, s ince both s t a t i c  and 
t o t a l  pressure probes w i l l  be used, it becomes necessary t h a t  t h e  t rans-  
ducer be so i n s t a l l e d  as t o  f a c i l i t a t e  easy removal and replacement. A s  
shown i n  Fig. 5 ,  t h i s  can be accomplished by removing the  threaded cone 
t i p ,  breaking the  wiring and pressure connections, and removing t h e  t rans-  
ducer. The pressure-sensi t ive face of t h e  transducer i s  sealed frm a l l  
except t h e  probe pressure by a gasketed cup held i n  place by an adjustable  
screw located i n  t h e  cone t i p .  
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Both the  moveable and the  fixed port ions of t he  s t r u t  a r e  diamond 
shaped. The moveable s t r u t  i s  c losely f i t t e d  t o  t h e  bottom s ide  of t h e  
i n t e r n a l  diamond of t h e  fixed s t r u t .  The top s ide  of t h e  moveable s t r u t  
i s  keyed by means of a 1/16 inch square key i n t o  t h e  f ixed s t r u t  t o  prevent 
binding under aerodynamic drag loads. The fixed s t r u t  i s  joined t o  t h e  
motor pod by means of a s i l v e r  a l loy  braze j o i n t  on both s ides  of t h e  pod. 

b )  Inboard s t r u t  and motor pod. Fig. 6 presents  a sec t iona l  sketch 
of t h e  inboard s t ru t  and motor pod. A s  shown, t h e  motor pod i s  t h e  
terminal  por t ion  of t h e  cy l indr ica l  s t i n g  of the  mechanism. 
t r a v e l  of t h e  moveable port ion of t h e  s t r u t  i s  the  same as fo r  t h e  out- 
board s t r u t ,  th ree  inches. The drive t r a i n  i s  s imi la r  except t h a t  t he  
motor-to-strut screw reduction i s  40: 1, t h e  motor t o  potentiometer reduction 
i s  400:1, and t h e  s t r u t  i s  driven by an 8-32 screw. 
s l i d e r  movement, t h e  pos i t ion  potentiometer tu rns  through 1.152 degrees o r  
0.319 ohms. Since t h e  potentiometer reso lu t ion  i s  t h e  same a s  f o r  t he  
outboard s t r u t ,  t h e  pos i t ion  of t h e  probe i n  t h i s  d i r ec t ion  can be deter-  
mined t o  be a t  bes t  +0.00163 inches. 

The m a x i m  

Thus, f o r  0.001-inch 

The s t r u t  i s  s imi la r  i n  construction t o  t h e  outboard s t r u t  except t h a t  
Yur a c l G i t i o i i Z l  st~errg;tE: t h e  tkliclmecrs is Fnm-wsed and a rectangular sect ion 
i s  added between t h e  leading and t r a i l i n g  wedges. F r i c t ion  reduction i s  
obtained by mating 1/16 inch X 0.950 inch surfaces on t h e  top and bottom 
of t h e  moveable s t r u t  t o  machined grooves i n  the  ins ide  of t h e  fixed s t r u t .  
Axial holes  a re  provided i n  t h e  moveable s t r u t  fo r  t h e  necessary wires and 
reference pressure tubes. The free end of the  moveable s t r u t  i s  attached 
t o  t h e  outboard s t r u t  motor pod by means of a s i l v e r  a l l o y  braze j o i n t  re-  
inforced with four 1/16 inch pins.  
pod i n  t h e  same manner as  t he  outboard s t r u t .  

The f ixed s t r u t  i s  mounted i n  t h e  motor 

c )  Axial motion actuator .  Motion of t he  outboard strut-motor pod 
and inboard strut-motor-pod assembly i n  t h e  a x i a l  directioii of thz  C---nr\l L,UllllT.I 

i s  accomplished by two means. Nine d i sc re t e  s teps  of six inches each cf 
t h e  e n t i r e  s t i ng - s t ru t  assembly are possible  for  rough posi t ioning.  For 
f i n e  pos i t ion ing  i n  any six-inch in t e rva l ,  motion of t h e  strut-motor-pod 
assembly i s  accomplished by driving t h i s  assembly with a D.C. motor through 
a 1OO:l gear reduction by means of a 1/16 inch b a l l  screw. 
been placed between the  motor and t h e  potentiometer with a reduction r a t i o  
of 1092.37:l. 
potentiometer reso lu t ion  i s  0.052 per cent,  posi t ioning accuracy can 
possibly be -.0035 inches. 
1 inch x 1/4 inch keys mated t o  the  inboard s t r u t  motor pod housing and 
t h e  s t ing .  

A reducer has 

Since t h e  b a l l  screw lead i s  0.062 inches/turn and the  

+ Radial motion of the  assembly i s  prevented by 

The d i sc re t e  s teps  of t h e  uni t  a r e  accomplished by dr iving t h e  e n t i r e  
s t i n g - s t r u t  assembly, again by means of a D.C. motor and b a l l  screws, 
through the  s t i n g  support cylinder shown i n  Fig. 
control led by f ix ing  a micro-switch t o  t h e  s t i ng  tube and locat ing c i r c u i t  
breakers a t  prec ise  six-inch in te rva ls .  I n  order t o  dr ive  t h e  u n i t  over 
t h e  c i r c u i t  breakers,  a p a r a l l e l  switch i s  avai lable  which, when closed, 
furnishes  puwer t o  the  dr ive motor u n t i l  t he  main c i r c u i t  again closes. 
schematic of the  e l e c t r i c a l  c i r c u i t r y  appears i n  Fig. 
assembly i s  supported i n  t h e  sting-support tube by means of 12 r o l l e r s  
f ixed  t o  t h e  s t i n g  support and r o l l i n g  grooves machined i n t o  t h e  outer 
surface of t he  s t i ng  tube as shown i n  the  f igure.  

3.  The in t e rva l s  a r e  

A 
The s t ing - s t ru t  7 .  
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2 )  S t ruc tu ra l  i n t e g r i t y .  

a) Aerodynamic loads. It i s  assumed for  t h e  purpose of ca lcu la t ing  
aerodynamic loads t h a t  t h e  boundary layer  probe support s t ruc tu re  w i l l  be 
subjected t o  a dynamic pressure of 1800 psf i n  the  low supersonic Mach 
number range. Estimates a re  given f o r  t he  lift and drag d i s t r i b u t i o n  on 
t h e  component p m t s  of t he  s t ruc ture ,  which fo r  t h i s  purpose i s  considered 
t o  be made up of t he  following par ts  i l l u s t r a t e d  i n  Fig. 8. 

0-1 

1-2 

9 9  L-J 

3-4 

4-5 

Part  I Name 

Outboard sect ion o f  1.556" 5.212" 0.219" 

Inboard sect ion of 2.75" 6.00" 0.372 

k c ?  16.00" (DIA = 1.75") 
Outboard sec t ion  O f  2.40" 3.125 0.246" 

outboard wing 

outboard wing 

inboard wing 

Inboard sect ion of 4.00" 6.21'' 0.500" 

I c ,  chord 1 6, span I t ,  thickness - 

inboard wing 

Further, for predic t ion  of the aerodynamic coe f f i c i en t ,  t h e  wing 
sect ions are assumed t o  be symmetricai 6iunurid & i i - f o i h  with tztal apex 
angles of 16" and thickness r a t io s  0,' 0.125. 

G r i f f i t h  [18] presents drag r e s u l t s  obtained from theory and experi- 
ment f o r  a 150 wedge with s t ra ight  afterbody obtained i n  a shock tunnel  
and wind tunnel r e s u l t s  fo r  a 14.4' diamond due t o  Liepmann and Bryson [19]. 
These r e s u l t s  together with those of s imilar  wedge sect ions with varying 
thickness r a t i o s ,  ind ica te  t h a t  a value for t h e  wing sect ion drag coef f ic ien t  
may be chosen conservatively as 

c = 0.09 D 

Guderley and Yoshihara [ 2 0 ]  present r e s u l t s  f o r  t h e  slope of t h e  
l i f t  curve fo r  t h in  symnetrical diamond sect ions.  Likewise, Vincenti, 
Dugan, and F'helps [21] p lo t  resu l t s  of theory and experiment fo r  a t h i n ,  
doubly symmetric wedge of approximately eight  per cent thickness.  F r o m  
these r e s u l t s ,  it i s  concluded that  a f a i r  approximation t o  t h e  l i f t  curve 
s lope for t h e  wing sect ions i s  given by 
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While t h e  drag load on the  pod has been deemed ins ign i f i can t  i n  t h e  
s t r e s s  ana lys i s ,  i t s  order of magnitude i s  of i n t e r e s t  f o r  loading de f l ec t ion  
calculat ions.  
fo r  t h i s  drag may be given by 

The r e s u l t s  of Drougge [ 2 2 ]  ind ica te  t h a t  a reasonable value 

= 0.2 D C 

Pod 

based on f r o n t a l  area.  

Other aerodynamic coef f ic ien ts  a r e  deemed of small e f f e c t  or  a r e  
inconsequential i n  a s t r e s s  analysis of t h e  boundary layer  probe support. 

Based upon the  preceding aerodynamic coe f f i c i en t s ,  t h e  loadings 
imposed on t h e  component p a r t s  of t he  probe support a r e  computed as  follows: 

Wing sections:  

drag : 

I -  

D=- 
12 

D w = - #/in.  of span D 12 

2 = 1P,oo #/ft. . %ax where 

l i f t :  

L wL = 12 #/in. of span 

= 1800 #/ft. 2 . 
where %ax 
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The load d i s t r ibu t ions  thus produced a r e  tabulated i n  t h e  following 
t ab le .  

w lif’t load L’ w drag load D’ Part  

0-1 1.75 #/in. 5.09 #/in. 

1-2 3.09 #/in. 8.99 #/in. 
3-4 2.70 #/in. 7.85 #/in. 
4-5 4.50 #/in. 13-33 #/in. 

~ 

Pod drag: 

I -  

where 

and 

c = 0.2 D 

= ‘D%ax*f 

2 = 1800 #/ft. 
%ax 

AlLT ft,’ A = O.WLU, f 

D = 6.01 # 

b)  S t ress  analysis  and test .  The aerodynamic loads sec t ion  tabula tes  
load d i s t r ibu t ions  fo r  the boundary layer  probe support subjected to a 
dynamic pressure of 1800 psf  and a th ree  degree angle-of-attack f o r  both 
inboard and outboard s t r u t s .  

The d i s t r ibu t ions  were found t o  be as  follows: 



Part  

0-1 

1- 2 

2-3 

3-4 

4-5 

w drag load D' Name 

Chtboard s e c t i o r  of 1.75 # inv  
outboard s t r u t  

Inboard sec t ion  of 3 e 09 #/he 
outboard s t r u t  

Pod 6.01 # 
Outboard sec t ion  of 2,70 #/in. 

Inboard sec t ion  of 4.50 #/'in, 
inboard s t r u t  

inboard s t r u t  

WT 9 lift load 
b 

5.09 #/in. 

8,99 #/in. 

7.85 #/in. 

13.33 #/in. 

These loadings a r e  shown on the  boundary Payer probe support i n  Fig. 8. 

Bee-bo&$ diagrams of the  sections of t h e  boundary layer  probe support 
are as follows: 

Sec*ion (0-1) * 

69.14 In-# 9,12 # 
626.53  # 4 23.77 iE-#  



I -  

Section (1-2). 

(1-2) = 8.99 #/in. 

390,14 in-# 27.66 # 
180.b7 # 

t @.ii i r i - e  // 

32 



Sect ion (2-3). 
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Section (3-4).  

194.96 in-# 1 J e 0 . 4 7  # 

465.58 in-#+ - _j_t 

33.67 # 

24.53 # 
I 

8 0 ~ 4 7  # I /  
Sect ion  (4-5) ., 
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The cross-sections of t h e  various port ions of t h e  s t r u t  are very 
near ly  symmetrical and f o r  s implici ty  have been analyzed as though 
they were symmetrical. 

Stresses  have been analyzed only i n  t h e  minor d i rec t ions ,  and 
therefore ,  t h e  moments of i n e r t i a  are needed i n  those d i rec t ions  ex- 
c lusively.  Further,  t h e  only s t r u t  experiencing a torque i s  the inboard 
' s t ru t ,  and consequently, t h e  to r s iona l  r i g i d i t i e s  f o r  i t s  sect ions 
so l e ly  are required for analys is .  

The per t inent  moments of i n e r t i a  [23] are as follows: 

Section (0-1). 

/ 

dl d2 d' 3 - hl > 

4 + d 4 )  
I X X  3 

where 

t = 0.219 i n .  

hl = 0.778 i n .  

1 d = 0.06250 in. 1 

d2 = 0.09375 i n .  

d = 0.14063 i n .  3 



Section (1-2). 

I t 2  
x -  - t 

I 

where 

hl = 0.7785" 

h2 = 1.3225" 

tl = 0.2200" 

t = 0,3716" 2 

Sect ion (3-4). 

where 

C = 2.728" 

tl= 0.250" 

t2= 0.156" 

hl = 0.g50" 

h2 = 0.889" 

h = 0.281" 3 
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sec t ion  (4-5). 

IC- 

where 

C = 4.058 in. 

t = 0.500 i n .  

t2 = 0.256 in. 
1 

S t a t i o n  6. 

hl = 1.7477 in .  

h = 0,5625 i n .  

h, = 0,9500 in. 
2 

w x - d  3 
iG 32 Stat ion 7. 

In - - In = 4 77 [€I4 - r4] - $a - b 1 R ' -  (R-gap depth)4] 

J = In t f [ (R - gap depth)4 - r4] 

where 
R6 = 1.0625 i n .  ; r6 = 0,9375 ir. ; R7 = 1.6875 i n .  ; r7 = 1.3125 i n .  

a6 = 0.9029 rad ; b6 = 0.6676 rad ; = 0.89644 rad ;b = 0.67424. rad a7 7 
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Mansfield [24] solves fo r  the  to r s iona l  r i g i d i t i e s  of diamond sec t ions ;  
h i s  resul ts  a re  given as a p l o t  of thickness  t o  chord r a t i o ,  t / C  , versus 
a t o r s iona l  r i g i d i t y  coef f ic ien t  in  Fig. 9. However, implementation of 
t h i s  reference requi res  some in te rpre ta t ion  concerning t h e  geometry of  t h e  
cross-sections of t h e  inboard s t ru t ' s  components. The cross-sect ions a re  
maximized and minimized as  below in to  cyl inders  of double-wedge sect ions.  

4-5 Outer 

4-5 Inner 
4-5 

4-5 

Minimized Maximized 
, 

Maximized 0.1405 

Minimized 0.1232 

Maximized 0.1219 
M i  nimi zed 0.0917 

4 

-4 
0.3402" ' 

2.728" 
2.790" 

rc 4.058" Y 

0,5703 'I 
'I 

0.5000'' 
7 

1 
1 

The thickness t o  chord r a t i o s  are determined f o r  t h e  modified double 
wedge sect ions of both the  outer and inner cylinders;  t h e  to r s iona l  
r i g i d i t y  coef f ic ien ts  a r e  then obtained from Fig. 9 and are  tabulated 
below. 

I t 
Diamond 
Section Assumed 

Maximi z ed 0.1304 
3 -4 Minimized 0.0?38 

Tor. Rigidi ty  

[ G C t  1/12 

0.959 
0.969 

0.965 
0.966 

0.955 

0.972 
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The average to r s iona l  r i g i d i t y  coe f f i c i en t s  become: 

for  t h e  outer double-wedge sec t ion  of fixed sec t ion  of t h e  inboard s t r u t  

f o r  t h e  inner double-wedge sect ion of f ixed sect ion of t he  inboard s t r u t  

= 0.969 0.966 + 0.972 
2 

f o r  t h e  outer double-wedge sect ion of moveable sect ion of t h e  inboard s t r u t  

The inner port ion of t h e  moveable sect ion of t h e  inboard s t r u t  cons is t s  
of two rectangular cutouts and a c i rcu lar  cutout.  
placed by one rectangular cutout as shown below f o r  the to r s iona l  analysis .  

These cutouts  a r e  re- 

Now, l e t  

where 

C i t i  
J . = c Y  - 
1 i 12 

t = 0.500 i n .  

t = 0.256 in .  

t = 0.256 in .  

t4 = 0.156 i n ,  

1 

2 

3 

(Y = 0.960 C1 = 4.058 in .  

C = 2.790 i n .  CY = 0.969 

c = 2.728 i n .  a3 = 0.964 

CY4 = 1.000 ' C4 = 0.950 i n .  

1 

2 2 

3 

The equivalent J 'of section (3-4) i s  assumed t o  be t h e  equivalent 
of t h e  averaged outer double-wedge so l id  sect ion minus the  equivalent J 
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J of t he  assumed inner rectangular sect ion,  i . e . ,  

Sect ion 

0-1 

1-2 

3-4 
4-5 
5-6 
6-7 

(3-4) = J3 - J4 J 

Moment of Ine r t i a  Equivalent J 

0.000326 in.  4 
0.002483 i n .  4 

0.001609 in.  4 
0.012755 in.  4 
0.361910 in.  4 
3.853960 in.  4 

0.00338 i n .  4 
0.03680 i n .  4 
0.54061 in .  4 
6.59080 i n ,  4 

.s imilar ly ,  fo r  sect ion (4-5 1 

(4-5) = J1 - J2 J 

The sect ion propert ies  a re  then tabulated as follows: 

With these sect ion properties,  t h e  bending and to r s iona l  s t resses  
a re  calculated using t h e  equations 

and 

respect ively,  while t h e  m a x i m u m  s t r e s s  i s  estimated by 

4 1  



The mater ia l  has the  following propert ies :  

23,223 
29,193 
36,170 
39,148 
17,893 
4,010 
3,838 

Sta t ion  1-5: S ta in less  S t e e l  Type 17-4 PH Hardened t o  33-35 Rockwell C 
Yield: 125,000 p s i  
Ultimate: 145,000 psi  

5,919 
5,919 
I., 087 
1,795 
2 34 

Sta t ion  6-7: Sta in less  S tee l  Type 304 
Yield: 35,000 p s i  
Ultimate: 85,000 ps i  

23,223 
29,193 
37,114 
40,023 
18,532 
8,025 
3,852 

A summary of per t inent  information and the  safe ty  f ac to r s  f o r  y i e ld  
and ul t imate  s t r e s s  a t  t h e  various s t a t ions  i s  given i n  the  next t a b l e s .  

5.382 
4.281 
3.368 
3.123 
6.745 
4.361 
9.085 

Sta t ion  
No.  

1 

2 

3 
4 
5 
6 
7 

Sta t ion  
No. 

1 

2 

3 
4 
5 
6 
7 

C 
i n .  

0.1095 
0.1858 
0.1250 
0.1250 
0.2500 
1.0625 
1.6875 

xx I 

i n .  4 

0.000326 
u . vo2483 
0.001609 
0.001609 

0.36191 
3.85396 

0.012755 

J 4  i n .  

0.00388 
0.00388 
0.0368 

6.5908 
0.54061 

M 
i n .  -# 

69.14 
??e. 14 
465.58 
503.91 
913.27 
1366.00 
8766.75 

T 
i n .  -# 

160.04 
160.04 
160.04 
913 27 
913.27 

0 
S. F. 1 S .  F.U Y 

7 
p s i  

6.244 
4.967 
3.906 
3.622 
7.824 
10.592 
22.065 

~- ~~ ~ ~~~ ~ 

It i s  des i rab le  t o  obtain a s a fe ty  f ac to r  of 3.0 fo r  y ie ld  and of 
5.0 for ult imate  s t r e s s .  It i s  seen t h a t  a l l  s t a t ions  a re  sa t i s f ac to ry  
with regerd t o  y i e ld  but t h a t  s ta t ions  3 and 4 a re  below t h e  des i rab le  
s a f e t y  f ac to r  for  ul t imate  stress. 
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Since t h e  loading a t  a l l  s ta t ions  i s  a l i n e a r  funct ion of t h e  dynamic 
pressure and the loadings a r e  zero f o r  
corresponding t o  a sa fe ty  f ac to r  of 5 f o r  ul t imate  s t r e s s  a t  t h e  c r i t i c a l  
s t a t i o n  4 becomes 

q = 0 , t h e  m a x i m u m  dynamic pressure 

= -  30622 X 1800 = 1303 psf  
%ax 5 

with a l l  a i r f o i l s  subjected t o  a three degree angle-of-attack. 

A facsimile  of t h e  motor pod brazed jo in t  at s t a t i o n  3 has been 
experimentally t e s t e d  with the  following r e s u l t s .  
f ixed,  a) a t e n s i l e  force of x 10,000 lbs .  was required t o  p u l l  t h e  s t r u t  
out of t h e  pod, and b )  a bending moment of M 2970 l b s , - i n .  a t  s t a t i o n  3 
was required t o  f a i l  t h e  j o i n t .  Since the  maximum estimated moment i s  
465.38 1b.-in.  (see page 42), a safety f ac to r  of M 6.4 seems avai lable .  

With t h e  motor pod 

3 )  S t a t i c  and t o t a l  pressure sensors.  A proper design of t h e  
geometry f o r  t h e  s t a t i c  and t o t a l  pressure sensors must take i n t o  consider- 
stlor, t h e  -,h:;c:eal c h ~ s c t e r i s t i c s  cf the f l n w  w h i r h  i s t o  be invest igated.  
The flow i n  question i s  t h a t  of a turbulent  boundary l aye r  of var iable  
thickness (1/2 t o  2-inch depth) on a wavy wal l  i n  t h e  low supersonic speed 
range. The wave amplitude t o  boundary layer  thickness  r a t i o  i s  very small 
so  t h a t  e s s e n t i a l l y  t h e  capab i l i t i e s  of the sensors must be t h e  same as 
fo r  conventional boundary layer  survey instruments i n  t h i s  speed range. 
In  any case, accurate measurements i n  the  very near v i c i n i t y  of t h e  w a l l ,  
p a r t i c u l a r l y  those of s t a t i c  pressure,  a re  not considered possible  with a 
general-purpose survey instrument due t o  w a l l  in te r fe rence  e f f ec t s  which 
are d i f f i cu l t  t o  analyze and due t o  misalignment of the probe with t h e  flow 
i n  t h e  case of t h e  wavy wall .  

I n  t h e  present case,  t h e  design r e l i e s  on ava i lab le  literature i n -  
ves t iga t ing  the  possible  causes o f  inaccuracies of l o g i c a l  geometry probes 
f o r  sensing s t a t i c  and t o t a l  pressures.  While such probes a re  used 
extensively,  no de ta i led  invest igat ion has been found which deals  with 
design fo r  optimum performance. 

Deta i l s  of t he  se lec ted  design of t he  s t a t i c  and t o t a l  pressure sensors 
are shown i n  Fig. 10 and 11. Each sensor together with i t s  s t i f f e n e r  and 
p l a s t i c  support i s  i d e n t i c a l  and interchangeable on t h e  supporting s t r u t  
as shown i n  Fig,  10 except f o r  d e t a i l s  of i t s  "sensing" end which are  shown 
i n  Fig. U. 
dimensions a r e  t h e  tube diameters, both o f  which a r e  0.030 inches with 
unsupported lengths beyond the  s t i f feners  of 1.75 inches. 
probe cons is t s  of a 40 cone a t  i t s  t i p  followed by four  0.010 inch holes 
w i t h  90° spacing around the  tube, these  holes being located 15 diameters 
behind the  cone shoulder. 
so as t o  present a t o t a l  thickness of 0,007 inches with an ins ide  opening 
0.003 inches i n  height .  None of these dimensions a r e  deemed c r i t i c a l .  

Insofar  as measurement capab i l i t i e s  are concerned, t h e  per t inent  

The s t a t i c  pressure 

The t o t a l  pressure probe i s  f la t tened  at i t s  t i p  
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Evidence t o  support t h e  conclusion t h a t  these  probes will provide 
accurate r e s u l t s  i n  the  experiment under consideration i s  given i n  t h e  
l i t e r a t u r e ,  Of primary importance i s  t h e  se l ec t ion  of t h e  probe diameters; 
Wilson and Young [25] ind ica te  that  t h e  aerodynamic in te r fe rence  of  p i t o t  
tubes of diameters l e s s  than s i x  per cent of t h e  boundary layer  thickness 
has negl ig ib le  e f f e c t  on turbulent boundary layer  cha rac t e r i s t i c s  a t  a 
freestream Mach number of 2. This r e s u l t ,  i f  co r rec t ,  allows use of t he  
present probes i n  boundary layers  a t  l e a s t  as  t h i n  as  1/2 inch. 

The s e n s i t i v i t y  of t he  probes t o  e r ro r s  induced by misalignment with 
t h e  flow have a l so  been considered. 
f la t tened  t o t a l  pressure probes that  provide a symmetrically placed hole  
a rea  which i s  a reasonable f ract ion of t h e  t o t a l  f r o n t a l  area w i l l  y i e ld  
e r ro r s  of t he  order of only one per cent a t  angles-of-attack as  high as 
10'. Hasel and Co le t t i  [ 2 7 ]  indicate  from f a i r l y  extensive t e s t s  t h a t  a t  
l o w  supersonic Mach numbers a s t a t i c  pressure probe, similar i n  design t o  
t he  present probe, with o r i f i ce s  located a t  l e a s t  e ight  diameters behind 
the  end of t h e  nose sect ion should provide f a i r l y  accurate s t a t i c  pressure 
measurements a t  angles-of-attack o f  5 3 O  within an e r r o r  of approximately 
th ree  per cent .  

Strack L26) f inds t h a t  caref 'ully 

VII. CONCLUDING REMARKS 

The i n i t i a l  r e s u l t s  of t he  analysis for predic t ing  i n  low supersonic 
flow t h e  f l u t t e r  boundaries f o r  a very l o w  aspect r a t i o  panel are promising 
and a more extensive ve r i f i ca t ion  of r e s u l t s  with previously derived in-  
formation i s  required.  It i s ,  therefore,  recommended t h a t  t h i s  analysis  
be continued under NASA Contract NAS8-20100 t i t l e d  "Ekperimental Research 
on Panel F lu t t e r  Aerodynamics. " 

The ha l f  amplitude t o  wave leiigkh r a t i o  f o r  t1;c s ta t iznmy two- 
dimensional wavy w a l l  models should be approximately 5 X 10-3 a t  M = 1.35 
t o  avoid t h e  e f f e c t s  of more l i n e a r i t y  i n  the  pressure d i s t r ibu t ion  and 
thus circumvent separation and shock waves. It i s  ant ic ipated t h a t  t h i s  
c r i t e r i a  can be somewhat relieved f o r  t he  three-dimensional models. 

The s t r e s s  analysis  of t h e  boundary layer  probe ind ica tes  a sa fe ty  
f ac to r  of 3.123 f o r  y ie ld  and 3.622 fo r  ul t imate  s t r e s s  when a l l  aero- 
dynamic surfaces a re  subjected t o  a t h ree  degree angle-of-attack and t h e  
dynamic pressure i s  1800 psf .  
stress, t h e  dynamic pressure should be reduced t o  1303 psf .  

To obtain a sa fe ty  fac tor  of f i ve  f o r  ul t imate  
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